Horton Ratios Link Self-Similarity with Maximum Entropy of Eco-Geomorphological Properties in Stream Networks
نویسندگان
چکیده
Stream networks are branched structures wherein water and energy move between land and atmosphere, modulated by evapotranspiration and its interaction with the gravitational dissipation of potential energy as runoff. These actions vary among climates characterized by Budyko theory, yet have not been integrated with Horton scaling, the ubiquitous pattern of eco-hydrological variation among Strahler streams that populate river basins. From Budyko theory, we reveal optimum entropy coincident with high biodiversity. Basins on either side of optimum respond in opposite ways to precipitation, which we evaluated for the classic Hubbard Brook experiment in New Hampshire and for the Whitewater River basin in Kansas. We demonstrate that Horton ratios are equivalent to Lagrange multipliers used in the extremum function leading to Shannon information entropy being maximal, subject to constraints. Properties of stream networks vary with constraints and inter-annual variation in water balance that challenge vegetation to match expected resource supply throughout the network. The entropy-Horton framework informs questions of biodiversity, resilience to perturbations in water supply, changes in potential evapotranspiration, and land use changes that move ecosystems away from optimal entropy with concomitant loss of productivity and biodiversity.
منابع مشابه
Providing a Link Prediction Model based on Structural and Homophily Similarity in Social Networks
In recent years, with the growing number of online social networks, these networks have become one of the best markets for advertising and commerce, so studying these networks is very important. Most online social networks are growing and changing with new communications (new edges). Forecasting new edges in online social networks can give us a better understanding of the growth of these networ...
متن کاملLink Prediction using Network Embedding based on Global Similarity
Background: The link prediction issue is one of the most widely used problems in complex network analysis. Link prediction requires knowing the background of previous link connections and combining them with available information. The link prediction local approaches with node structure objectives are fast in case of speed but are not accurate enough. On the other hand, the global link predicti...
متن کاملA Link Prediction Method Based on Learning Automata in Social Networks
Nowadays, online social networks are considered as one of the most important emerging phenomena of human societies. In these networks, prediction of link by relying on the knowledge existing of the interaction between network actors provides an estimation of the probability of creation of a new relationship in future. A wide range of applications can be found for link prediction such as electro...
متن کاملInvestigation of Entropy Generation in Stagnation Point Flow of Nano Fluid Impinging on the Cylinder with Constant Wall Heat Flux
: In this research, dimensionless temperature and entropy generation for the steady state flow in the stagnation point of incompressible nanofluid impinging on an infinite cylinder have been investigated. The impinging free stream is steady with a constant strain rate k. Similarity solution of the Navier-Stokes equations and energy equation is derived in this problem. A reduction of these equa...
متن کاملAsymptotic Behavior of the Maximum Entropy Routing in Computer Networks
Maximum entropy method has been successfully used for underdetermined systems. Network design problem, with routing and topology subproblems, is an underdetermined system and a good candidate for maximum entropy method application. Wireless ad-hoc networks with rapidly changing topology and link quality, where the speed of recalculation is of crucial importance, have been recently successfully ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Entropy
دوره 19 شماره
صفحات -
تاریخ انتشار 2017